Keywords: electromagnetic field, urban system, monitoring, security, civil security, information technology


Purpose. Determining the levels of environmental pollution by electromagnetic sources and providing recommendations on how to prevent the impact of negative factors on human health. Design/methodology/approach. Particular attention is paid to the spread of electromagnetic fields within the urban system of Kremenchuk, namely from household sources, which include cellular communications and WiFi wireless communications. These products have recently become extremely widespread, without taking into account their total impact on the environment and human health. Therefore, the authors tried to conduct experiments both in the homes of city residents and in their leisure cities. Determination of levels of pollution by electromagnetic sources is carried out using numerical values of energy flux density in μW/cm2, for this purpose is carried out using direct instrumental measurement with the device ATT-2592. This device is designed to determine the level of the electromagnetic background, the principle of which is based on the isotropic method of measurement. Conclusions. An algorithm for organizing observations of the level of background characteristics of the electromagnetic field (EMF) within the urban system is proposed. Limitations/consequences of research. The proposed algorithm is universal and can be used in various fields of production and management to determine the levels of environmental pollution by electromagnetic sources. Practical consequences. An algorithm for determining the levels of environmental pollution by electromagnetic sources within the urban system has been developed. Originality/meaning. According to the study, there is no acute negative impact on the health of residents of a certain group in the urban system, however, the issues of chronic negative impact remain relevant due to the fact that 8% of families surveyed WiFi router is located at a distance of 1 m from the child's bed.


Sukach, S., Rieznik, D., Zachepa, N., Chenchevoy, V. (2020). Normalization of the Magnetic Fields of Electrical Equipment in Case of Unauthorized Influence on Critical Information Infrastructure Facilities. Soft Target Protection, 337–349.

Bayrak, M., Genҫ, Ӧ., Yaldiz, E. (2010). Analysis of the electromagnetic pollution for a pilot region in Turkey. Journal of Electromagnetic Annalysis&Applications, 139–144.

Balmori, A. (2010). The incidence of electromagnetic pollution on wild mammals: A new “poison” with a slow effect on nature?. Environmentalist, 30, 90–97.

Krushevsʹkyy, Yu. V., Kravtsov, Yu. I., Boroday, Ya. O. (2008). Vplyv elektromahnitnoho vyprominyuvannya prystroyiv stilʹnykovoho zv'yazku na lyudynu. Naukovi pratsi Vinnytsʹkoho natsionalʹnoho tekhnichnoho universytetu, 1. URL:

Firstenberg, A. (2008). Killing Fields, The Ecologist, 34, 22–27.

Buckner, C. (2011). Effects of electromagnetic fields on biological processes are spatial and temporal-dependent. Thesis abstract for Dr. Sc. (Biomolecular), School of Graduate Studies Laurentian University Sudbury, Ontario, Canada.

Ghosh, R. and Sunkavalli S. (2010). “Clean” pollution: the hidden legacy of the electromagnetic wave. International Journal of Environmental Science and Development, 4, 336–340.

Shatalov, V. M. (2012). Mechanism of the biological impact of weak electromagnetic fields and the in vitro effects of blood degassing. Biofizika, 57(6), 808–813.

Maha, E. D., Salah, A. R., Sanaa, R., Sarah, E. M., Yehia, M. (2014). Effects of low frequence electromagnetic fields on status oncogene expression level in peripheral blood mononuclear cells. British Biotechnology Journal, 4(12), 1264–1271.

Dhami, A. K., Jagbir, K. (2012). Orientation studies of a cell-phone mast to access electromagnetic radiation exposure level. International Journal of Environmental Science, 2(3), 2285–2294.

Jampílec, J., Kráľová, K. (2015). Impact of environmental contaminants on breast cancer. Ecological Chemistry and Engineering S-Chemia, 22(1), 9–44.

Ambroziak, D., Gradolewski, D., Jakubiuk, K., Jaworski, J., Kocicki, A., Krawczuk, M., Lewczuk, B., Piechocki, J., Redlarski, G., Skarbek, L., Tojza, P., Zak, A. (2015). The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. URL: (accessed November 11, 2016).

Batish, D. R., Kohli, R. K. Sharma, V. P., Singh, H. P. (2011). Cell phone electromagnetic fields radiations affect rhizogenesis through impairment of biochemical processes. Environmental Monitoring Assessment, 184, 1813–1821.

Chen, D., Dong, Y., Hao, W., Wang, M., Wu, F., Yi, Y., Yu, X., Zhao, H., Zhang, Y. (2013). The double-layer matching design of broad-band foam cement absorbing panel for electromagnetic pollution control, Applied Mechanics and Materials, 3, 924–929.

Alejos, A. V., Cuinas, I., Sanchez, M. G. (2005). Vegetal barriers for minimizing electromagnetic pollution at cellular phone bands, Electronics Letters Journal, 41(6), 340–341.

Herberman, R. B. (2008). Growing concern about electromagnetic pollution and cell phones. URL: (accessed November 11, 2016).

Maslov, M. Y., Spodobaev, M. Y. Spodobaev, Y. M. (2013). Electromagnetic monitoring of the megapolis, Work SRIR, 4, 5–16.

Levent, S. (2015). Assessment of Electromagnetic Radiation with Respect to Base Station Types. International Journal of Information and Electronics Engineering, 5(3), 176–179.

Begishev, M. R., Dvoeglazova, S. V., Kozmin, V. A., Kochkin, D. E., Saveliev, S. A. (2012). Automated monitoring of electromagnetic field intensity, URL: (accessed November 10, 2016).

Armer, A. I., Elyagin, S. V. (2008). Mobile environmental monitoring device-level electromagnetic field. Modern problems of science and education, 4, 30–34.

Sviridova, E. Y. (2012) Environmental monitoring and improvement of electromagnetic safety of the urbanized territories in the vicinity of power lines: thesis abstract for Cand. Sc. (Engineering), 05.23.19 / Moscow state technical University, Moscow, Russia, 2012. 24 p.

Merzlikin, I. N. Method of evaluation and monitoring of electromagnetic radiation at aviation enterprises of civil aviation: thesis abstract for Cand. Sc. (Engineering), 05.22.14 / Moscow state technical University of civil aviation, Moscow, Russia, 2013. 20 p.

Cret, P., Lolea, M., Sorin, G. (2014). Investigation about urban electromagnetic pollution sources from perimeter of city of Oradea. Nonconventional Technologies review, 3, 12–17.

Antolin, A., Jimenez, A., Paniagua, J. M., Rufo M. (2012). The spatial statistics formalism applied to mapping electromagnetic radiation in urban areas. Environmental Monitoring Assessment, 185, 311–322.

Bulucu, U., Gümüşay, Ṻ., Kavas A., Şen, A. (2008). Programming an artificial neural network tool for spatial interpolation in GIS – a case study for indoor radio wave propagation of WLAN, Sensor, 8, 5996–6014.

Aboura, H., Agbinya, J., Chaczk, Z. (2010). Software engineering for mapping radio frequency pollution. Intl journal of electronics and telecommunications, 56(2), 129–136.

Betta, G., Capriglione, D., Miele G. (2010). How to use traditional spectrum analyzers for correct evaluation of the human exposure to electromagnetic fields generated by WiMAX devices. Metrology and measurement systems, 17(4), 525–536.

Nykyforov, V., Sakun, O., Bakharev V. (2015). Assessment and forecasting influence of electromagnetic noise and pollution on protected territory and leisure. Transactions оf Kremenchuk Mykhailo Ostrohradskyi National University, 93(4), 90–96.

Marenych, A. V., Bakharev, V. S., Voloshyna, V. G. (2016). The environmental electromagnetic pollution problems analysis in the context of this type of environmental hazard environmental monitoring methodology formation. Вісник КрНУ імені Михайла Остроградського. 101(6), 96–103.

Marenych, A. V., Bakharyev, V. S., Deyna, I. P. (2015). Problemni pytannya ekolohichnoho monitorynhu shumovoho ta elektromahnitnoho zabrudnennya v mezhakh selʹbyshchnykh terytoriy. Prykladni aspekty tekhnohenno-ekolohichnoyi bezpeky: zbirnyk materialiv mizhnarodnoyi naukovo-praktychnoyi konferentsiyi, 153–154.

Marenych, A.V., Bakharyev, V.S. (2015). Problemni pytannya ekolohichnoho monitorynhu elektromahnitnoho zabrudnennya. Problemy ekolohichnoyi bezpeky: zbirnyk tez dopovidey XIII mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi, 47

Marenych, A. V., Bakharyev, V. S. (2015). Suchasni osoblyvosti tsilodobovoho bezperervnoho vplyvu elektromahnitnoho vyprominyuvannya na stan zdorovʺya lyudyny. Aktualʹni problemy zhyttyediyalʹnosti suspilʹstva: materialy KHKH mizhnarodnoyi nauk.-metod. konf. studentiv, aspirantiv ta molodykh uchenykh, , 135.

Marenych, A. V., Bakharyev, V. S. (2015). Otsinka tsilodobovoho bezperervnoho vplyvu elektromahnitnoho vyprominyuvannya na stan zdorovʺya lyudyny – bazys dlya rozrobky systemy ekolohichnoho monitorynhu. Ideyi akademika V.I. Vernadsʹkoho ta problemy staloho rozvytku rehioniv: materialy KHVI mizhnarodnoyi nauk.-prakt. konf., 82–83.

Marenych, A. V., Voloshyna, V. H. (2017). Rivenʹ vplyvu zasobiv bezprovidnoho zvʺyazku v zhytlovomu prymishchenni ta sposoby yoho minimizatsiyi. Ekoloho-enerhetychni problemy suchasnosti: zbirnyk naukovykh pratsʹ vseukrayinsʹkoyi naukovo-tekhnichnoyi konferentsiyi molodykh uchenykh ta studenti, 25–26.

DSN 239-96. Derzhavni sanitarni normy i pravyla zakhystu naselennya vid vplyvu elektromahnitnykh vyprominyuvanʹ: nakaz MOZ vid 01.0801996 r. № 239. Available:

How to Cite
Bakhariev, V., Kortsova, O., Rieznik, D., Sukach, S., Tsybulnyk, N., & Cheberiachko, Y. (2022). INFORMATION TECHNOLOGIES FOR CONTROLLING THE INFLUENCE OF TECHNOGENIC FACTORS ON THE SECURITY OF THE POPULATION WITHIN THE URBOSYSTEM. Labour Protection Problems in Ukraine, 38(1-2), 20-29.